UTM Technical Capability Levels (TCLs)

CAPABILITY 1: DEMONSTRATED HOW TO ENABLE MULTIPLE OPERATIONS UNDER CONSTRAINTS
- Notification of area of operation
- Over unpopulated land or water
- Minimal general aviation traffic in area
- Contingencies handled by UAS pilot

Product: Overall con ops, architecture, and roles

CAPABILITY 2: DEMONSTRATED HOW TO ENABLE EXPANDED MULTIPLE OPERATIONS
- Beyond visual line-of-sight
- Tracking and low density operations
- Sparsely populated areas
- Procedures and “rules-of-the road”
- Longer range applications

Product: Requirements for multiple BVLOS operations including off-nominal dynamic changes

CAPABILITY 3: FOCUSES ON HOW TO ENABLE MULTIPLE HETEROGENEOUS OPERATIONS
- Beyond visual line of sight/expanded
- Over moderately populated land
- Some interaction with manned aircraft
- Tracking, V2V, V2UTM and internet connected

Product: Requirements for heterogeneous operations

CAPABILITY 4: FOCUSES ON ENABLING MULTIPLE HETEROGENEOUS HIGH DENSITY URBAN OPERATIONS
- Beyond visual line of sight
- Urban environments, higher density
- Autonomous V2V, internet connected
- Large-scale contingencies mitigation
- Urban use cases

Product: Requirements to manage contingencies in high density, heterogeneous, and constrained operations

Risk-based approach: depends on application and geography
Urban Air Mobility Maturity Levels (UML)

<table>
<thead>
<tr>
<th>Maturity Level</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>INITIAL STATE</td>
<td></td>
</tr>
<tr>
<td>UML-1</td>
<td>Early Operational Exploration and Demonstrations in Limited Environments</td>
</tr>
<tr>
<td>UML-2</td>
<td>Low Density and Complexity Commercial Operations with Assistive Automation</td>
</tr>
<tr>
<td>INTERMEDIATE STATE</td>
<td></td>
</tr>
<tr>
<td>UML-3</td>
<td>Low Density, Medium Complexity Operations with Comprehensive Safety Assurance Automation</td>
</tr>
<tr>
<td>UML-4</td>
<td>Medium Density and Complexity Operations with Collaborative and Responsible Automated Systems</td>
</tr>
<tr>
<td>MATURE STATE</td>
<td></td>
</tr>
<tr>
<td>UML-5</td>
<td>High Density and Complexity Operations with Highly-Integrated Automated Networks</td>
</tr>
<tr>
<td>UML-6</td>
<td>Ubiquitous UAM Operations with System-Wide Automated Optimization</td>
</tr>
</tbody>
</table>

UML-1: Early Operational Exploration and Demonstrations in Limited Environments
- Aircraft certification testing and operational evaluations; traditional airspace procedures; exploratory community demos and data

UML-2: Low Density and Complexity Commercial Operations with Assistive Automation
- Type certified aircraft; initial Part 135 operation approvals; limited markets with favorable weather and regulation; small UAM network serving urban periphery; UTM as possible, UAM corridors through controlled airspace

UML-3: Low Density, Medium Complexity Operations with Comprehensive Safety Assurance Automation
- Operations into urban core; operational validation of airspace, UTM inspired ATM, CNS, C², and automation for scalable, weather-tolerant operations; closely space UAM pads, ports; noise compatible with urban soundscape; model-local regulations

UML-4: Medium Density and Complexity Operations with Collaborative and Responsible Automated Systems
- 100s of simultaneous operations; expanded networks including high-capacity UAM ports; many UTM inspired ATM services available, simplified vehicle operations for credit; low-visibility operations

UML-5: High Density and Complexity Operations with Highly-Integrated Automated Networks
- 1,000s of simultaneous operations; large-scale, highly-distributed networks; high-density UTM inspired ATM; autonomous aircraft and remote, M:N fleet management; high-weather tolerance including icing; high-volume manufacturing

UML-6: Ubiquitous UAM Operations with System-Wide Automated Optimization
- 10,000s of simultaneous operations (limited by physical infrastructure, scaled ATM); essential ownership models enabled, ad hoc landing sites; noise compatible with suburban/rural operations; societal expectation

Draft
Urban Air Mobility (UAM) Vision
Revolutionize mobility around
metropolitan areas by enabling a safe,
efficient, convenient, affordable, and
accessible air transportation system for
passengers and cargo
NASA UAM Grand Challenge Timeline

GC-1 SAAs

This activity includes drafting Space Act Agreement (SAA) templates, participants identifying the desire to sign an SAA, the negotiation and signing of specific SAAs.

Industry Day

Discuss GC-1 plans, objectives, & execution strategy. Outline participation requirements, objectives, expectations, execution strategy, & schedules.

RFI Responses Due

Nov 1, 2018

Webinar/Set Up Working Groups

Nov 16

Jan 2019

Qualification and A/W

Participants signing SAAs will begin qualification scenarios and NASA's Airworthiness (A/W) process. The process has to be completed prior to flying in GC-1. There are additional follow-on requirements that will occur before each GC flight.

Jan 2020

GC-1 is anticipated to challenge industry and other community participants to address foundational UAM vehicle design readiness and robustness for UAM operations.

Jan 2021

GC-2

Future challenges in this series are anticipated to address key safety and integration barriers across the UAM ecosystem while also emphasizing critical operational challenges.

GC-2 SAAs

This would be for participants new to the Grand Challenge desiring to participate in GC-2 or, if needed, to update SAAs with GC-1 participants continuing on to GC-2.
2020 Grand Challenge (GC-1) Overview

Vehicles
functional UAM vehicles with threshold level of demonstrated airworthiness

NASA Systems & Interfaces
UTM interfaces through Testbed

Airspace Management
airspace and air traffic management technologies and services built and simulated to a threshold level of UAM ATM requirements

Safety and Integration Scenarios
airworthiness processes, realistic UML-4 scenarios, and a range(s) designed in concert with the FAA to support UAM testing

Stakeholder Integration
societal integration and acceptance of UAM Operations including public acceptance, supporting infrastructure, operational integration, standards organizations, the local regulatory environment, etc.
GC Vehicle and Airspace Management Participants

Vehicles

- Provide vehicle design and development data to support airworthiness approvals
- Conduct “experimental” class flights to benchmark vehicles and demonstrate ability to handle simple failures and contingencies
- Conduct Safety and Integration Scenarios for Grand Challenge including pre-defined interfaces with Airspace Management systems

Airspace Management

- Provide UAM ATM technologies that meet initial ATM-X provided requirements and Interface Control Documents (ICD)
- Demonstrate capabilities will meet the ICD benchmark and contingency simulations or live testing
- Conduct Safety and Integration Scenarios for Grand Challenge including pre-defined interfaces with vehicle systems